Integrated Modeling and Control Based on Reinforcement Learning
نویسنده
چکیده
This is a summary of results with Dyna, a class of architectures for intelligent systems based on approximating dynamic programming methods. Dyna architectures integrate trial-and-error (reinforcement) learning and execution-time planning into a single process operating alternately on the world and on a learned forward model of the world. We describe and show results for two Dyna architectures, Dyna-AHC and Dyna-Q. Using a navigation task, results are shown for a simple Dyna-AHC system which simultaneously learns by trial and error, learns a world model, and plans optimal routes using the evolving world model. We show that Dyna-Q architectures (based on Watkins's Q-Iearning) are easy to adapt for use in changing environments.
منابع مشابه
Reinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملThe Design and Trial of a Learning Environment Based on Model Construction Approach to Instruction Aimed at Improving Concept Learning and Modeling Practices
The Design and Trial of a Learning Environment Based on Model Construction Approach to Instruction Aimed at Improving Concept Learning and Modeling Practices M. Maaleki* H. FarDaanesh, Ph.D.** E. Talaa’ee, Ph.D.*** J. Haatami, Ph.D.**** Model construction is an integrated approach aimed at a better understanding and acquisition of scientific/epistemological concepts and skills. To tr...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کامل